
AD-A138 220 GENERALIZED CONVEXITY AND CONCAVITY PROPERI ES U I11 5/
OPTIMAL VALUE FUNCT..(U) GEORGE WASHINGTON UNIV

WASHINGTON DC INST FOR MANAGEMENT SCIE..

UNCLASSIFIED A V FIACCO ET AL. 11APR 83 F/G 12/1 NLIuu...uu....l
IIIEEEIIIEEEEE
IEEEEEEEEIIIEE



IJ0

1111.6

11111.2 5 111I1L.4U 1.6

MICROCOPYY RESOLUTION TEST CHART

N4ATIONAL BUREAU OF STANOARDS-1R63-A

Oa



VIM

~4IZED CONVEXITY AND CONCAVITY PROPERTIES
IME OPTIMAL VALUE FUNCTION IN PARAMETRIC U

NONLINEAR PROGRAMMING g

by

Anthony V. Fiacco

Jerzy Kyparisis

STUDENTS FACULTY STUDY
00 ESEARCH DEVELOPMENT EU

URE CAREER CREATIVITY C
MMUNITY LEADERSHIP TECI
NOLOGY FRONTIF10

..ENGINEERING AP N
,...:GEORGE WASHINh

KFEB 2 3198

02 21 0711
INSTITUTE FOR MANAGEMENT

SCIENCE AND ENGINEERING

SCHOOL OF ENGINEERING
AND APPLIED SCIENCE



-- ~r "i ' -I

GENERALIZED CONVEXITY AND CONCAVITY PROPERTIES
OF THE OPTIMAL VALUE FUNCTION IN PARAMETRIC

NONLINEAR PROGRAPIKING

by

Anthony V. Fiacco
Jerzy Kyparisis

RESOURCE DYNAMICS
and

NATIONAL SCIENCE FOUNDATION
GWU/IMSE/Serial T-472/83

11 April 1983

THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science

Washington, DC 20052

Institute for Management Science and Engineering

Research Supported
by

Contract N00014-83-K-0215
Project NR 047 624

Office of Naval Research
and

Grant ECS-8201370
National Science Foundation

This document has been approved for public sale
and release; its distribution is unlimited.



I UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (l"en Does EeredE)

REPORT DOCUMENTATION PAGE ORE COMPLETING FORM
1. REPORT NUMIER a. GOVT ACCESSION NO: S. RECIPIENT'S CATALOG MUMmER

GW/IISE/T-472/83
4. TITLE (af1E SWIubUle) 1. TYPE OF REPORT a PERIOD COVERED

GENERALIZED CONVEXITY AND CONCAVITY
PROPERTIES OF THE OPTIMAL VALUE FUNCTION IN SCIENTIFIC

PARAMETRIC NONLINEAR PROGRAMMING 4. PERFORMING O11. REPORT "UMM

7. AUTHOR(@) S. CONTRAC O GRANT NUMUERI(fe)

ANTHONY V. FIACCO N00014-83-K-0215
JERZY KYPARISIS ECS-8201370

S. PERFORMING ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

GEORGE WASHINGTON UNIVERSITY AREA 6 WORK UNIT NUMOERS

INSTITUTE FOR MANAGEMENT SCIENCE AND ENGINEERING
WASHINGTON, DC 20052

II. CONTROLLING OFFICE NAME AMC ADDRESS 12. REPORT DATE

OFFICE OF NAVAL RESEARCH 11 April 1983
CODE 411 S&P IS. NUMSCR OF PAGES

ARLINGTON, VA 22217 46
7. MONITORING AGENCY NAME I AOCRESS(i differet from Cani,.flinS Office) IS. SECURITY CLASS (o this report)

UNCLASSIFIED
INS. DECLASSI FICATION/ OOWNGRAOING

SCHEDOULE

I. DISTRIEUTION STATEMENT (of thio Reort)

APPROVED FOR PUBLIC SALE AND RELEASE; DISTRIBUTION UNLIMITED.

17. DISTRIBUTION STATEMENT (of the ae-set enlered In 91e" k, It ffaMf 6ee ReP.ft)

It. SUPPLEMENTARY NOTES

1S. KEY WOROS (Confine on rowere Wde it noeoe.p al Inltif by blee inel)

PARAMETRIC NLP GENERALIZED CONVEXITY
OPTIMAL VALUE FUNCTION GENERALIZED CONCAVITY
CONVEXITY SOLUTION POINT-TO-SET MAP
CONCAVITY QUASICO EXITY

N. AGSTRACT (Ceufwie deveree ode If neoem =W identfy bp WeAk nulwe.)

In this paper we consider generalized e v t ;i-ed........... properties
of the optimal value function f* for the general parametric optimization
problem P(e) of the form ainxf(x,e) s.t. x e R(e) . Many results on convex-
ity and concavity characterizations of f* were presented by the authors in
a previous paper. Such properties of f* and the solution set map S* form

(continued)

DO €. I 'N7473 am-mom o,, I mov " is onomers
DO / 1473 0".0." n*y* IUNCLASSIFIED

14CUmITY CI.ASSICAIO11 OF VIS PAeE Vwwm D"mL



UNCLASSIFIED

.. L.,1J4ITV CLASSIFICATION OF THIS PAGEIl~ben Doma Entged)

20. Abstract (cont'd)

an important part of the theoretical basis for sensitivity, stability and
parametric analysis in mathematical optimization. We give sufficient
conditions for several types of generalized convexity and concavity of
f* , in terms of respective generalized convexity and concavity assumptions
on f and convexity and concavity assumptions on the feasible region
point-to-set map R . Specializations of these results to the general
parametric inequality-equality constrained nonlinear programming problem
and its right-hand-side version are provided.

!U

, O

lSCuNIrV CLAUP'CATIOw OPr This PBASIIfIt Dme Des.

"1*. .. I



THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science

Washington, DC 20052

Institute for Management Science and Engineering

GENERALIZED CONVEXITY AND CONCAVITY PROPERTIES
OF THE OPTIMAL VALUE FUNCTION IN PARAMETRIC

NONLINEAR PROGRAMMING

by

Anthony V. Fiacco
Jerzy Kyparisis

Abstract
of

RESOURCE DYNAMICS
and

NATIONAL SCIENCE FOUNDATION
GWU/IMSE/Serial T-472/83

11 April 1983

SL--4u his paper' we considersaeneralized convexity and/concavity prop-

erties of-Ehe optimal value function f* for the general ,.arametric
optimization problem P(e) of the form min f(x,e) s.t. x R(e) . Many
results on convexity and concavity characterizations of f* were presented
by the authors in a previous paper. Such properties of f* and the solu-
tion set map S* form an important part of the theoretical basis for
sensitivity, stability and parametric analysis in mathematical optimiza-
tion. * give sufficient conditions for several types of generalized
convexity and concavity of f* , in terms of respective generalized
convexipy and concavity assumptions on f and convexity and concavity
assumptAons on the feasible region point-to-set map R . Specializations
of these results to the general parametric inequality-equality constrained
nonlin ar programming problem and its right-hand-side version are provided. .

Research Supported

* by
Contract N00014-83-K-021

Project NR 04 624*-

Office of Naval Research
and

Grant ECS-8201370
National Science Foundation .. er

L AW



T-4 72

Table of Contents

Page

1. Introduction....... ................... 1

2. Basic (generalized) convexity and
concavity notions. ..................... 3

3. Quasiconvexity of the optimal value function 6

4. Quasiconcavity and quasimonotonicity
of the optimal value function ...... ......... 17

5. Pseudoconvexity and pseudoconcavity of the
optimal value function..... .............. 31

6. Concluding remarks...... ................. 36

References..................... ..... 38

1A



THE GEORGE WASHINGTON UNIVERSITY

School of Engineering and Applied Science
Washington, DC 20052

Institute for Management Science and Engineering

GENERALIZED CONVEXITY AND CONCAVITY PROPERTIES
OF THE OPTIMAL VALUE FUNCTION IN PARAMETRIC

NONLINEAR PROGRAMMING

by

Anthony V. Fiacco
Jerzy Kyparisis

RESOURCE DYNAMICS
and

NATIONAL SCIENCE FOUNDATION
GWU/IMSE/Serial T-472/83

11 April 1983

1. Introduction

We study a general parametric optimization problem of the form

min f(x,e) s.t. x e R(e) P(e)

where x E -) E and R is a point-to-set map assigning to points

knin E subsets (possibly empty) of En . Several specializations of this

problem are also considered. We shall be primarily interested in the

characterization of generalized convexity and concavity properties of the

optimal value function f* of the problem P(e) , defined as

= infx  {f(x,e)lx c R(e)} , if R(e) +

+® ,if R(e)

Many convexity and concavity properties of f* were presented by

the authors in a previous paper (Fiacco and Kyparisis (1982)). Here

we continue this line of investigation and give sufficient conditions

for additional generalized convexity and concavity properties of f* , e.g.,

quasiconvexity, quasiconcavity, quasimonotonicity, pseudoconvexity and

- :- - -- 'I, J J
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pseudoconcavity, given various assumptions on f and the feasible set

map R.

Convexity and concavity properties as well as other principal

properties of the optimal value function f* such as continuity,

differentiability, etc. have attracted much interest since they form a

theoretical basis for sensitivity, stability and parametric analysis in

nonlinear optimization. We refer the interested reader to the recent

monographs by Rockafellar (1974), Brosowski (1982), Bank et.al. (1982)

and Fiacco (1983). This paper presents many results, almost all of

which are new in a unified manner, utilizing a number of definitions

introduced here as well as in the previous paper by the authors. Readers

less familiar with the various concepts of (generalized) convexity and

concavity may consult the books by Mangasarian (1969) and Ortega and

Rheinboldt (1970), or a recent survey by Avriel et. al.(1981). For

the notions of convex analysis the reader is referred to Rockafellar

(1970), and for those of topology and point-to-set map theory to Berge

(1963).

We briefly specify the several programs studied in this paper.

A special case of P(e) is the parametric optimization problem

min f(x) s.t. x c R(e) P (e)

.he parametric nonlinear programming (NLP) problem P3(e) is of the

form P(e) with the map R defined by

R(e) - {x e M I gl(xe) > 0, i-l,...,m, hj(xe) =0, Jil,...,p)

hreCn n k 1n k 1where M CE n , g, En x E - EI,-l 1 .... ,m, h M E xE E ,J-l, p

The general right-hand-side (grhs) NLP problem P2 (e) is also of the form

P(e) with R given by

R(e) - {x e M Ig(x) > e , il,...,m , h (x) em + j,

Note that P2 (e) differs from the standard rhs NLP problem for which

-2
-- 2 -
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f(x,e) - f(x). Furthermore, a special problem P1 (e) is of the form

P(e) with R given by R(e) = M

Finally, we make a few comments on possible extensions and

applications of the results presented here. Most of the results can be

easily extended to more general spaces, e.g., real vector or Banach

spaces, without any change in the proofs, and applied to abstract

problems of optimal control, mathematical economics, etc. These results

can also be applied and extended for various specific classes of problems

of nonlinear programming, e.g., geometric programs, separable programs,

etc. by taking advantage of the special structure of these problems.

Computation of simple upper and lower parametric bounds on f* is

another possible application which should be exploited.

2. Basic (generalized) convexity and concavity notions

The material of this section is adapted from Fiacco and Kyparisis

(1982). We state the definitions and several basic results for complete-

ness, since we shall use them extensively in the subsequent sections.

An (extended) function $:En - E Vt- -,-} is called "quasiconvex" on

a convex set M C Er if for all xlx 2 e M and X e (0,1)

I(Ax1 + (1-A) x2 ) < max {(xl), 1(x2)},

and is called "quasiconcave" on M (see Fenchel (1953)) if -$ is

quasiconvex on X . Also, $ is called "quasimonotonic" on M (Martos

(1967)) if it is both quasiconvex and quasiconcave on M

The following definition is well known. The point-to-set map
k n kR: Ek En is called "convex" on a convex set S C E if ,for all

el,e2 eS and X £ (0,1),

X R(eI) + (1-X) R(e2 ) C R(Xe 1 + (l-A)e2)

The next two results state sufficient conditions for the convexity of

the point-to-set map R

-3-
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Proposition 2.1. Consider the parametric NLP problem P3(e) . If I

are jointly quasiconcave on H x S,{h are jointly quasimonotonic on

M x S and M and S are convex sets, then R given by R(e) -

{x F M I gi(x~e) > 0 , i-l,...,m, hj(xe) - 0 , jfl,...,p} is convex

on S

Proposition 2.2. Consider the grhs parametric NLP problem P2 (e)

If {gi} are concave on M , {h } are affine on M and M is convex,

then R given by R(e) = {x C M Igi(x) > ei, i=l,...,m, h(x) fi

ej = 1,. ,p} is convex.

The following extends the definition of convexity for point-to-set

maps. The point-to-set map R:E k - En  is called "essentially convex"

on a convex set SCE k if for all el, e2  c S , el + e2 and A E (0,1)

X R(e1) + (l-A)R(e2) C R(Xe I + (l-A)e 2 )

Define ckA and conv A to be the closure and convex hull of the set A

respectively. The map R is called "closure convex" ("essentially

closure convex") on S if the map cZR given by cR(e) = ck(R(e))

is convex (essentially convex) on S . R is also called "hull convex"

("essentially hull convex") on S if the map convR given by convR(e) =

conv(R(e)) is convex (essentially convex) on S

We also consider concavity of the map R . The point-to-set map
R:E k- En is called "concave" on a convex set S CE k  if, for all

el, e2  e S. and A E (0,1)

R(Ae1 + (l-A)e 2 ) C A R(e1 ) + (1-A) R(e2) (see Tagawa (1978)).

Similarly, as for convex maps we extend the last definition as follows.

The map R is called "closure concave" on a convex set S if the map

ckR is concave on S. Also, R is called "hull concave" on S if

the map convR is concave on S . We slightly strengthen the definition

of concavity and call the map R "strictly concave" on S if for any

el, e2 e S e + e2 e £ (0,1) and x C R (Ae1 + (1-A)e2) there exist

-4-
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x1 e R(e1 ) and x2 E R(e2) such that x, + x2 and x - Xx1 +

(1-A) x2 * Also, we call R "strictly hull concave" on S if the map

convR is strictly concave on S .

Combining the previous definitions we call R "affine"

("essentially affine")(see Tagawa (1978) and Penot (1982)) on S if

R is both convex (essentially convex) and concave on S . Further,

we extend these notions and call R "hull affine" ("essentially hull

af fine") on S if the map convRis af fine (essentially af fine) on S

Finally, we consider the notion of homogeneity. An (extended)

function 4 Er - {-o ,} is called "positively homogeneous"
r

on a cone K C E (see Rockafellar (1970)) if 0 (Xx) = AX(x) for all

x E K and A > 0 . Note that if 0 is positively homogeneous on K

and OE K then p (0) = 0 if c (0) is finite. The point-to-set map

R:E k - En  is called "positively homogeneous" on a cone K C Ek  (see

Rockafellar (1967)) if R(Ae) = AR(e) for all e c K and A > 0 .

The following results provide sufficient conditions for the positive

homogeneity of the optimal value function f*

Proposition 2.3. Consider the general parametric optimization problem

P(e) . If f is jointly positively homogeneous on E x K , R is

positively homogeneous on K and K is a cone, then f* is positively

homogeneous on K .

Proposition 2.4. Consider the parametric NLP problem P3(e) . If f

S{} and {hj} are jointly positively homogeneous on M x K , and

M and K are cones, then f* is positively homogeneous on K

Proposition 2.5. Consider the special problem P1 (e) . If f is

positively homogeneous in e on K for every x cE , R(e) - M for any

ee K and X >0 , M is arbitrary and K is a cone ,then f* is

positively homogeneous on K

-5-
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The following definitions for the maps combine the definition of

positive homogeneity with convexity and concavity as previously introduced

in this section. A point-to-set map R:E k _ En will be called homogeneous

convex" ("homogeneous concave") on a convex cone K C Ek if R is both

positively homogeneous and convex (concave) on K Homogeneous convex

maps were introduced and studied by Rockafellar (1967, 1970) who calls

such maps "convex processes." Convex-valued homogeneous concave maps were

introduced and studied by loffe (1979) under the name "fans."

3. Quasiconvexity of the optimal value function

Recall from Section 2 that O:Er _. E1 V {- ,,} is called
"quasiconvex" on a convex set M C Er if for all xI, x2 e M and
X E(0,1)

W(x I1 + (l-X)x 2) < max 10(x I ) ,(x2 )1

Convexity and essential convexity of R was also defined in Section 2.

Proposition 3.1. Consider the general parametric optimization problem

P(e) . If f is jointly quasiconvex on the set {(x,e)Ix E R(e), e E S}

R is essentially convex or convex on S and S is convex, then f*

is quasiconvex on S

Proof

Let el, e2 6 S , e1 + e2 and X E (0,1) By essential convexity of R

and quasiconvexity of f we obtain

f*(Xe1 + (l-A)e2) = inf f(x,Ae + (1-X)e2 )
x C R (XeI + (I-X)e2)

<inf f(Xx1 + (l-A)x2 , AeI + (l-A)e 2) <

xI e R(e1 )

x2 e R(e2)

< < inf max {f(xl,el) , f(x2 ,e2 ) -

XI r R(e1 )

x2 e R(e2)

-6-
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W max {inf f(xl,e I) , inf f(x ,e2)} 
xI F R(e I) x2 c R(e

= max {f*(e) f*(e)}

i.e., f* is quasiconvex on S

Proposition 3.1 can be specialized to the NLP problems P 3 (e)

and r2(e) using Fropositions 2.1 and 2.2, respectively. We give

these results without a proof. Recall from Section 2 that 0 is

quasiconcave on M if - 0 is quasiconvex on M and is quasi-

monotonic on M if it is both quasiconvex and quasiconcave on M

Corollary 3.2. Consider the parametric NLP problem P3 (e) . If f

is jointly quasiconvex on M x S , fgi} are jointly quasiconcave

(or concave) on X x S , {h } are jointly quasimonotonic (or affine)

on 1 x S , and M and S are convex sets, then f* is quasiconvex

on S

Corollary 3.3. Consider the grhs parametric NLP problem P2 (e) . If

f is jointly quasiconvex on M x S , fgi} are concave on M , {h i}

are affine on M , and M and S are convex, then f* is quasiconvex

on S

Luenberger (1968) obtained the result of Corollary 3.3 in the

special case when f(x,e) - f(x) and no equality constraints are

present. The next two results extend Proposition 3.1.

Proposition 3.4. Consider the general parametric optimization problem

P(e) . If f is jointly quasiconvex on the set {(x,e)Ix E ct(R(e)), e c S}

and upper semicontinuous in x on the set cZ(R(S)) for every e E S

R is essentially closure convex or closure convex on S and S is
* convex, then f* is quasiconvex on S

-7-L thnfi
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Proof

Define R(e) = ci(R(e)) for e E S and denote f*(e)

inf {f(x,e)l x E R(e)} . Since R is essentially convex, by Proposition

3.1 f* is quasiconvex on S . Thus, we need only show that f*(e) =

f*(e) for e e S . Clearly f*(e) > f*(e) for e e S . Let

{x } C R(e) , e e S be such that f*(e) = lim f(x ,e) (such a sequence
n n+oo

exists by definition of infimum). Then for every n there is a sequence

{x } C R(e) such that x = lim x . Hence, by upper semicontinuity

nm n O

of f

f(x ne) = f(lim x nme) > lim sup f(xnm ,e) > f*(e)
n-Ko -

what implies that f*(e) > f*(e) , e E S

Remark 3.5. The above proof shows that if f is upper semicontinuous

in x and R(e) is an arbitrary set, then

!*(e) = inf f(x,e) = inf f(x,e) = f*(e)

x E ck(R(e)) x e R(e)

Proposition 3.6. Consider the general parametric optimization problem

P(e) . If f is jointly quasiconvex on the set {(x,e)j x E conv(R(e)),

e E S} and quasiconcave in x on the set conv(R(S)) for every e E S

R is essentially hull convex or hull convex on S and S is convex,

then f* is quasiconvex on S

Proof

Define R(e) - cony (R(e)) for e E S . Denote f*(e) -

inf {f(x,e)I x c R(e)} . Since R is essentially convex, by Proposition

3.1 f* is quasiconvex on S . We shall show that f*(e) - f*(e) for

e e S . Obviously, f*(e) > f*(e) for e c S . Suppose now that

e e S and x E R(e). Then x - A x1 + (l-A)x 2  for some x1,x2 c R(e)

and A c (0,1) . By quasiconcavity of f

-8-
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f(x,e) =f(Ax 1 + (l-X)x2,e) > min{f(x,,e) ,f(x 2,e)}

t > inf f(x,e) = f*(e)

x E R(e)

XE
This implies that f*(e) =inf f(x,e) > f*(e)

x e R(e)

Remark 3.7. In the above proof we have basically shown that if f is

quasiconcave in x and R(e) is arbitrary, then

f*(e) - inf f(x,e) = inf f(x,e) = f*(e)

x E conv(R(e)) x e R(e)

We call R:E k _ E na "quasiconvex" point-to-set map on a convex

set S C E kif R -1(M) r) S (where we def ine R -1(M) {e eE E kJR(e) nl m
n

see Berge(1963)) is convex for any convex set M C E .It is easy to see

that an (essentially) convex point-to-set map R on S is also quasi-

convex on S , but not conversely. The next result strengthens Proposition

3.1 for the problem P'(e)

Proposition 3.8. Consider the parametric optimization problem P'(e)

If f is quasiconvex on the set R(S) , R is quasiconvex on S and

S is convex, then f* is quasiconvex onS

Proof

It is enough to show that for any C E E1U 1+ ccLo = eE ej f*(e) < c)

is convex. Let e 1,e2 C L 0 and X e (0,1) .Then f*(e) < C
cI

f*(e ) < c , so for some x1 E R(e) x2  R(e), f(x ) < c . f(x ) < c

Thus, e1,e 2 C R 
1 ( xX 2]J) 1 S and by our assumption also

Xe 1 + (14X)e 2 e R7(ixx 2 1) n s . This implies that for some x e x,2

Xe1I + (1-4)e 2 E R (x) . By quasiconvexity of f,f(x) < max {f(x 1). f~x2)}

< c and since x C R(Xe 1 + (1-4)e 2), also f*(Xe 1 + (l-X)e 2  < c

1 2

* i~e, Xe+ (lX~e9
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An essentially equivalent result was proved recently by Oettli (1981).

He consider constraints of the form e E R'(x) and calls R' quasiconvex

if R'(M) is convex for any convex set M C En •
Consistent with the definitions given in Section 2 we call the map

R:E k - En "closure quasiconvex" on a convex set S C Ek if the map ckR

is quasiconvex on S , and call R "hull quasiconvex" on S if the map

convR is quasiconvex on S . We use these notions to extend Proposition

3.8 in the following two results. Their proofs are not given, since they

easily follow from Proposition 3.8 and Remarks 3.5 and 3.7, respectively.

Proposition 3.9. Consider the parametric optimization problem P'(e)

If f is quasiconvex and upper semicontinuous on the set ck(R(S))

R is closure quasiconvex on S and S is convex, then f* is

quasiconvex on S

Proposition 3.10. Consider the parametric optimization problem P'(e)

If f is quasimonotonic on the set conv(R(S)), R is hull quasiconvex

on S and S is convex, then f* is quasiconvex on S

A function :Er - E1 U -,-} is called strictly quasiconvex

on a convex set M C Er (Pol'yak (1966), Ponstein (1967), who calls it

unnamed convex, and Ortega and Rheinboldt (1970)) if, for all

XX 2 E M , x1 + x2 and A E (0,1),

(Xx1 + (l-A)x 2 ) < max {O(x 1) ,(x 2 )}

We note that some authors reserve the name strict quasiconvexity for

another property of a function (see the definition following Proposition

3.14). Our terminology is consistent with that in Avriel et. al. (1981).

Note that a strictly quasiconvex function is also quasiconvex.

Proposition 3.11. Consider the general parametric optimization problem

P(e) . If f is jointly strictly quasiconvex on the set {(x,e)Ix e R(e),

e e S} , R is essentially convex or convex on S , S is convex and

S*(e) + * for all e C S , then f* is strictly quasiconvex on S

-10-
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Proof

Let el,e 2 E S , e1 + e2 , A E (0,1) and denote e= Xe1 + (1-)e 2

By our assumptions there exist x1 * E S*(e1 ) and x2* E S*(e2) , so

by strict quasiconvexity of f and convexity of R we obtain

max {f*(e) , f*(e2)} = max{f(x1*,eI) , f(x2 * , e2)}

> fMIx 1* + (1-X)x 2* , eX) > inf f(x 1 + (1-X)x 2  e X)
x E: R(e I)

x2 E R(e
2)

> inf f(x,e ) = f*(e )

x S R(eX)

i.e., f* is strictly quasiconvex on S

A specialization of this result to the parametric NLP problem P3 (e) can be

obtained using Propostion 2.1. For the problem P'(e) we obtain another

result (note that Proposition 3.11 cannot be applied in this case).

Proposition 3.12. Consider the parametric optimization problem P'(e)

If f is strictly quasiconvex on the set R(S) , R is convex on S ,S

is convex, S*(e) 0 for all e e S and S*(e1 ) S*(e 2 ) if

el,e 2  S , el f e2 , then f* is strictly quasiconvex on S

Proof

Let el,e 2 e S , el f e2 , X E (0,1) and denote e, = Xe1 + (l-A)e2

By our assumptions there exist x* * S*(e 1 ) , x 2 * S*(e 2)

X 1 x 2 * and

max {f*(e) , f*(e)} max {f(x 1 *), f(x 2 *)}

> f(Axl* + (1-X)x 2 *) > inf f(x I + (l-X)x 2 ) > inf f(x) - f*(e%)
x 1 R(e1) xe R(e X

2  R(e2)

i.e., f* is strictly quasiconvex on S

- 11 -
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Remark 3.13. Note that the sets S*(e) are actually singletons in this

result, since f is strictly quasiconvex and R is convex.

In order to strengthen the last result we introduce the following

notion. We call the map R:E k - En  "strictly quasiconvex" on a convex

set S C Ek if,for any xl,x2 e En, e e R-(x ) n S , e2 e R-
1 (x2 ) (3 S

el + e2 and X E(0,1) , Xe1 + (l-X)e 2 e R-(Xlx 2)) nl S . It is clear

that (essential) convexity of R implies strict quasiconvexity of R

which in turn implies quasiconvexity of R

Proposition 3.14. Consider the parametric optimization problem P'(e)

If f is strictly quasiconvex on the set R(S), R is strictly quasi-

convex on S , S is convex, S*(e) + c for all e 6 S and S*(e I)

+ S*(e2 ) if el,e 2 C S , e1 + e2 , then f* is strictly quasiconvex on S

Proof

Let el,e 2 E S , e1 + e2 and XE (0,1). Denote eX = Xe1 + (l-X)e 2

By the assumptions there exist x1 * E S*(e 1) and x2 * E S*(e 2 ) I

Xl*+ X2* Thus, xk* E R(ek) , k=1,2, so ek E R-1(xk* ) r) S ,k-,2

and by strict quasiconvexity of R, e. C R-l((xl*,x2*))r3S

This implies that for some xC (x* , x 2 *) ,x e R(e)

Therefore

max { f*(e) , f*(e)} max{f(xl*) , f(x 2*) } > f(x)

> inf f(x) f*(eX)

x C R(ed)

i.e., f* is strictly quasiconvex on S

- 12 -
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A function 4:E r * E1 U {--o , c} is called semistrictly quasi-

convex on a convex set M CE r (Avriel et. al. (1981); many authors call

this property strict quasiconvexity, see e.g., Mangasarian (1965, 1969)

and Ponstein (1967)) if, for all xl,X 2 E M and A e (0,1)

O(xI) < V(x2) implies that O(Xx 1 + (l-X)x 2) < O(x2)

Note that if 0 is strictly quasiconvex, then it is semistrictly quasi-

convex. However, in general, a semistrictly quasiconvex function is also

quasiconvex only if it is continuous (Avriel et. al. (1981)).

Proposition 3.15. Consider the general parametric optimization

problem P(e) . If f is jointly semistrictly quasiconvex on the set

[(x,e)Jx E R(e) , e c S}, R is essentially convex or convex on S

S is convex and S*(e) + 0 for all e E S , then f* is semistrictly

quasiconvex on S

Proof

Let el,e 2 E S , A E (0,1) and denote e = Xe1 + (l-X)e 2

Suppose that f*(e I) < f*(e 2) (so that el + e2)

By our assumptions there exist xl* E S*(e I) and x2* E S*(e2) , so

by semistrict quasiconvexity of f and convexity of R we obtain

- 13 -
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f*(e) f(x2* , e2) > f(Xx1* + (l-X)x2* e2)

> inf f(Xx1 I + (l-X)x 2 , e,) > inf f(x, e) = f*(e.)

1e R(e1) x e R(e.)

12 E R(e2 )

i.e., f* is semistrictly quasiconvex on S

This result can be readily specialized to the parametric NLP problem

P 3(e) using Proposition 2.1. Note that unlike the situation for a

strictly quasiconvex function, if f(x) is semistrictly quasiconvex,

then f(x,e) = f(x) is jointly semistrictly quasiconvex. Thus,

Proposition 3.15 is applicable to the problem P'(e) as well. We state

this result without proof.

Corollary 3.16. Consider the parametric optimization problem P'(e)

If f is semistrictly quasiconvex on the set R(S) , R is convex on
S , S is convex and S*(e) + for all e E S , then f* is semi-

strictly quasiconvex on S

This result can be strengthened using the notion of strict

quasiconvexity for maps.

Proposition 3.17. Consider the parametric optimization problem P'(e)

If f is semistrictly quasiconvex on the set R(S) , R is strictly

quasiconvex on S , S is convex and S*(e) + c for all e E S , then

f* is semistrictly quasiconvex on S

j Proof

Let el,e 2 e S , X c(0,1) and denote et X e1 + (1-X)e 2 . Suppose

that f*(e I) < f*(e 2) (this implies that e, + e2) . Since S*(e) + ,

e l S, there exis t xl* e S*(e I ) and x2* c S*(e2) hence xk* e R(ek)

k-1,2 and e k c RI(xk*) ( S , k-l,2 . By strict quasiconvexity of R

eA E Rl((xl*,x2*)) flS, i.e., for some x (x1*,x2*) , e R(e X

- 14 -t.
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Thus, by semistrict quasiconvexity of f

f*(e) 2 f(X 2*) > fCi) > inf f(x) =f*Ce X)

x E R(e X)

i.e., f* is semistrictly quasiconvex on S

Analogous to the definition of uniform convexity (see Ortega and

Rheinboldt (1970)) we define "uniform quasiconvexity." A function

,:r E 1V f-00 001 is called "uniformly quasiconvex with d(.)" on a

convex set McE rCPol'yak (1966), see also Ortega and Rheinboldt (1970)

for a slightly different definition) if, for all x, x 2 E: M and

W(X + (1-X)xj2< a {O(x) I (x) 2lx 1-x 2 1)

where d: [0,00) -1- [0,00) is an increasing function, with

d(t) > 0 for t > 0 and d(O) -0 , and 1-1is an arbitrary norm

in E r

Proposition 3.18. Consider the general parametric optimization problem

P(e) . If f is jointly uniformly quasiconvex with d(-) on the set

{ (x, e)j xCE R(e) , e e S1, R is essentially convex or convex on S,

and S is a convex set, then f* is uniformly quasiconvex with d(-)

on S

Proof

Let e1,e 2 E S , el + e 2  and X e (0,1). By our assumptions and the

properties of d and the norm we obtain

f*(Xe 1 + (1-X)e 2  inf f(x, Xe 1 + (l-X)e 2  <

x e R(Ae 1 + (1-A)e)

< inf f(Xx1 + (1-X)x Xe1 + (1-X)e)

x1 eCR(e )
C R(e )

-15-



T-472

< inf [max {f(x 1,eI) , f(x 2 ,e 2 )}-X (i-X) d (J (xle 1 ) - (x 2 ,e 2 )I N) ]

x1 e R(e1)

x2 c R(e2)

< inf [max {f(x1,e1) , f(x 2 ,e 2)} - X(l-X) d (Ile, - e2 m1)]

xI E R(e1 )

x2 E R(e2)

= max {inf f(xl,e I ) , inf f(x 2 ,e 2 )} - X(i-A) d (Ile, - e211)

x I E R(el) x 2 E R(e2)

= max {f*(e) , f*(e)} - (1-A) d (lIel - e211)

i.e., f* is uniformly quasiconvex with d(-) on S

Remark 3.19. Note that the above result would still hold if we only

assumed that, for any xl, x2 E M and X e (0,1)

f(AxI + (l-A)x 2, XeI + (l-X)e 2 ) < max {f(xle I) , f(x2,e2)} -

X(i-X) d (Ile, - e211)

This property combines uniform quasiconvexity of f in e with Joint

quasiconvexity of f in (x,e)

Observe that Proposition 3.18 can be specialized to the NLP problems

P3 (e) and P2 (e) using Proposition 2.1 and 2.2, respectively.

r 1A function :E - E 4 {- U ,o} is called "homogeneous quasiconvex"
r("homogeneous quasiconcave") on a convex cone K C E if it is both

positively homogeneous and quasiconvex (quasiconcave) on K . Using the

notion of homogeneous convexity of R (see Section 2) we easily obtain

the following result.

Proposition 3.20. Consider the general parametric optimization problem

P(e) . If f is jointly homogeneous quasiconvex on EnxK , R is

homogeneous convex on K and K is a convex cone, then f* is homogeneous

quasiconvex on K

- 16 -
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Proof

Follows directly from Propositions 3.1 and 2.3 taken together.

Specialization of this result to the parametric NLP problem P3(e)

is given next.

Corollary 3.21. Consider the parametric NLP problem P3(e). If f is

jointly homogeneous quasiconvex on MxK , {gi} are jointly homogeneous

quasiconcave on MxK , {h I are jointly linear on MxK , and M and

K are convex cones, then f* is homogeneous convex on K

Proof

Follows immediately from Proposition 3.20, 2.1 and 2.3.

4. Quasiconcavity and guasimonotonicity of the
optimal value function

Recall from Section 2 that a function i:Er - E1 U {_ o,oo} is

called "quasiconcave" on a convex set M C Er if, for all x1 ,x 2 c ' and

X E (O,1)

(%xI + (l-X)x 2) > min { (x1) , O(x2)}

Concavity of R was defined in Section 2.

Proposition 4.1. Consider the general parametric optimization problem P(e).

If f is jointly quasiconcave on the set {(x,e)( x E R(e), e E S}

R is concave on S , and S is convex, then f* is quasiconcave on S

Proof

Let e19e2 e S and X E (0,1) . Using quasiconcavity of f and concavity

of R we obtain

f*(Xe I + (l-X)e 2) inf f(x, Xe1 + (l-X)e 2 ) >

x = R(Xe 1+ (l-A)e 2)

> inf f(,x 1 + (l-X)x 2 , e + (l-X)e 2) >

x, c R(e1)

x2 c R(e2)

- 17 -

L . . . . . . . .. . . . ..... . . . .i . .. - - - - , - - - .'... ., .



T-472

> inf min {f(xl,e 1 ) , f(x2,e2 )}

x1 E R(e1)

x2 e R(e2 )

- min {inf f(xe 1 ) , inf f(x2,e2)} =

x 1  R(e ) x2 e R(e2)

= min {f*(el) , f*(e2} , i.e., f* is quasiconcave on S

Remark 4.2. Note that the intermediate function in the proof of Proposition

4.1 given by

f*() = inf f(x 1 + (l-A)x 2 , Xe1 + (l-)e 2)

x 1 R(e )

x2 E R(e2 )

where el,e 2 E S are fixed, is quasiconcave on [0,1] by Proposition 4.9

(since R(e1 ) , R(e2 ) are fixed and f(Xx 1 + (1-A)x 2 , AeI + (l-X)e 2 )

is quasiconcave in X for any fixed xl,x2) . Thus *(X) is a quasi-

concave lower bound on f* on the interval [el,e 21 , which is sharper than

the constant bound given by min {f*(e1 ) , f*(e 2 )i

The following result strengthens Proposition 4.1.

Proposition 4.3. Consider the general parametric optimization Problem P(e).

If f is jointly quasiconcave on the set {(x,e)I x c conv(R(e)), e E S}

R is hull concave on S and S is convex, then f* is quasiconcave on S

Proof

Define R(e) - conv(R(e)) for e E S . Denote f*(e) - inf {f(x,e)I

x £ R(e)}. By Proposition 4.1, f* is quasiconcave on S , since R

is concave on S. Also,Remark 3.7 implies that f*(e) - f*(e) for e E S

and proves the result.

-18-Nil ,!
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Another extension of Proposition 4.1 is given next.

Proposition 4.4. Consider the general parametric optimization problem

P(e). If f is jointly quasiconcave on the set {(x,e)I x E ck(R(e)),

e E S} and upper semicontinuous in x on c(R(S)) for every e E S

R is closure concave on S and S is a convex set, then f* is

quasiconcave on S

Proof

Denote R(e) = ck(R(e)), e e S and f*(e) = inf {f(x,e)l x E R (e))~X

By Proposition 4.1, ?* is quasiconcave on S , since R is concave on

S. view of Remark 3.5, f*(e) = f*(e) for e £ S , proving the

result.

Remark 4.5. Proposition 4.4 will remain true if we assume only that

convR is closure concave on S

We call R:E k _ En  a "quasiconcave" point-to-set map on a convex

set ScEk if, for all el,e2 F S and X £ (0,I),

R(Ae1 + (l-A)e 2 ) C conv(R(e1 ) L) R(e2))

Equivalently, the map R is called quasiconcave on a convex set S if

(M) r S (where we define R+(M) = le F Ek R(e) C MI , see Berge (1963))

is convex for any convex set H (both definitions coincide since they are

in turn equivalent to the following condition: for any el,e 2 E S

A £ (0,1) and convex set M , R(e1 ) c H and R(e2) c M implies

R(Ae1 + (l-X)e 2 ) c M) . Observe the analogy between this definition and

the definition of quasfconvexity for point-to-set maps given in Section 3.

We also note that R is quasiconcave if and only if convR is quasiconcave.

-19-
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Since a map (hull) concave on S is also quasiconcave on S , the

next result strengthens the result of Propositions 4.1 and 4.3 for the

problem P'(e).

Proposition 4.6. Consider the parametric optimization problem P (e).

If f is quasiconcave on the set R(S) , R is quasiconcave on S and

S is convex, then f* is quasiconcave on S

Proof

Let el,e2 E S and X E (0,1). Suppose that for some c e E1 U {-}

f*(e) > c and f*(e > c . Then f(x) > c for all x e R(e and

for all x c R(e i.e. R(e U R(e2) C Uc = {xlf(x)> c} . By

0 0
quasiconcavity of f U is convex, hence conv(R(e ) U R(e)) C- U°c 1 2c

By quasiconcavity of R also R(Xe + (l-X)e ) C U , i.e.,
1 2 c

f(x) > c for all x c R(Xe 1 + (l-X)e 2 ) implying that f*(Xe1 + (l-X)e 2)

> c

The next result gives yet another sufficient condition for quasi-

concavity of f* for the problem P'(e) , by strengthening the assumption

on R and dispensing with the assumption on f

Proposition 4.7. Consider the parametric optimization problem P'(e)

If f is arbitrary, S is convex, and if, for any e, e2 c S and

X c (0,1)

R(Ae 1+ (l-X)e 2) C-R(e1 ) U R(e2) , then f* is quasi-

concave on S

Proof

Let el,e 2 e S and X c (0,1). By our assumption

f*(e + (1-)e 2) = inf f(x) > inf f(x) =

x e R(Xe 1 + (l-X)e 2) x c R(e I ) IJ R(e 2 )

-20-
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= mn {inf f(x) , inf f(x)} min {f*(e) , f*(e2)}

x E R(e) x E R(e2)

i.e. f* is quasiconcave on S

The following result provides an application of Proposition 4.7 to duality

theory in quasiconvex programming (Luenberger (1968) and Oettli (1981)).

Proposition 4.8. Consider the general parametric optimization problem

P(e) . Define the dual function O:E r - E1  as follows

n(z) = 'f (x,e) {f(x,e)l x E R(e) , zT 0} .

Then, for arbitrary f and R , a is quasiconcave on Er

Proof

Define the feasible set in the above minimization by R(z) = {(x,e) 6

G(R) jzT E < 0}. We want to show that for any zI , z2 c E
r and X £ (0,1)

R(Xz1 + (l-X)z 2 ) C R(zI) j R(z2) Let (x,e) E R(Xz I + (l-X)z 2) , i.e.

(x,e) s G(R) and (z I + (l-X)z 2)T E < 0 . Suppose that (x,e)

^T TR(z1 ) U R(z2) Then z1 E > 0 and z2 E > 0 , since (x,e) e G(R).

T
But this implies that (XzI, + (l-X)z2 ) £ > 0 which is a contradiction.

The result follows from Proposition 4.7.

The above result was recently proved by Oettli (1981) in the context

of quasiconvex programming when f(x,e) = f(x) . He also notes that the
T 1

result remains true if we replace z c < 0 by g(z,e) < 0 , where g is

quasiconcave in z for any e Er . Also, an earlier version of this

result was obtained by Luenberger (1968) for the standard rhs parametric

NLP problem with no equality constraints present and a defined on

r ErI >
E+ -z e , i-l,...,r} . The name dual function is justified

by the formula

O(z) - infe {f*(e)l zT E O}

and the fact that under certain conditions f*(O) - max O(z)
z c Er

-21-
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Finally, we give the following two simple results.

Proposition 4.9. Consider the special problem P (e). If f is quasi-

concave in e on S for any x E M , S is convex and 14 is arbitrary,

then f* is quasiconcave on S

Proof

Let el,e 2 E S and A E (0,1). By our assumptions

f*(Xe1 + (l-X)e 2 ) =inf f(x,Xe1 + (l-X)e 2)

inf min {f(x,eI) , f(x,e2)} =

X E: M

min{inf f(x,eI) , inf f(x,e2)} = min {f*(e I) , f*(e 2)}

x E M x E M

i.e. f* is quasiconcave on S

Note that this result has a more general counterpart: inf f is quasi-
i E I

concave if {f I are quasiconcave and I is an arbitrary index set.

One can also show that this result is a corollary of Proposition 4.7.

Proposition 4.10. Consider the general parametric optimization Problem P(e).

If f is quasiconcave in x on M for all e E S and is quasiconcave

in e on S for all x E M , S is convex and conv(R(e)) = M for all

e c S , then f* is quasiconcave on S

Proof

Define f*(e) = inffx {f(x,e) l x c M} for e e S . By Proposition 4.9

f* is quasiconcave on S . Applying Remark 3.7 we obtain f*(e) =

inf f(x,e) - f*(e) for e E S , thus f* is also quasiconcave on S

x e R(e)

We call O:E r - E1 0 {- U ,c} "strictly quasiconcave" on a convex

set M CEr if, for all xl,x 2 c M , x1 + x2 and X c (0,1)

- 22 -
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0(,x I + (1-X)x 2 ) > min{O(x 1 ) ,(x)

i.e., if - * is strictly quasiconvex on M- (see the remarks following

the definition of strict quasiconvexity in Section 3).

Proposition 4.11. Consider the general parametric optimization Problem P(e).

If f is jointly strictly quasiconcave on the set {(x,e)l x e conv(R(e)),

e c S} ,R is hull concave or concave on S , S is convex and S*(e) +

for all e E S , then f* is strictly quasiconcave on S

Proof

In view of Remark 3.7 it is enough to prove this result for R concave.

Let el,e 2 E S , el + e2 and X E (0,1). Denote e. = Xe1 + (l-X)e 2

By our assumptions there exists x* e S*(eX) and by concavity of R

X* = Ax1 + (l-X)x2  for some x1 E R(eI) , x2 E R(e2) Using strict

quasiconcavity of f we obtain

f*(e%) = f(x*,e%) = f(Xx 1 + (l-A)x 2,e )

> min {f(xl,e I) , f(x2 e2}

> min {inf f(x,e1 ) , inf f(x,e2 )} = min {f*(e I) , f*(e 2)}

x E R(e1 ) x E R(e2)

i.e. f* is strictly quasiconcave on S

For the problem P'(e) we obtain the following result(strict concavity

and strict hull concavity for maps were introduced in Section 2).

Proposition 4.12. Consider the parametric optimization problem P'(e).

If f is strictly quasiconcave on the set conv(R(S)) , R is strictly

hull concave or strictly concave on S , S is convex and S*(e) +
for all e c S , then f* is strictly quasiconcave on S

Proof

By Remark 3.7 it suffices to give the proof for R st-rictly concave.

Let el,e 2 e S , el + e2 and A E(0,1). Denote e, - Xe1 + (l-X)e2 .

By our assumptions there exists x* c S*(eX) and by strict concavity

- 23 -
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of R x* = Xx1 + (1-X)x 2  for some x1 E R(e1) , x2 c R(e2) ,x 1 + x2

Using strict quasiconcavity of f we have

f*(e) = f(x*) = f(Xx1 + (l-X)x 2 ) > min {f(xl) f(x2)}

> min {inf f(x) , inf f(x)} = min {f*(e) f*(e2)}

x e R(el) x E R(e2 )

i.e. f* is strictly quasiconcave on S

The result in Proposition 4.12 can be generalized using the notion

introduced next. A point-to-set map R:Ek - En will be called "strictly

quasiconcave" on a convex set S C Ek if for el,e 2 : S , el + e2

A e (0,1) and x £ R(Xe 1 + (l-X)e 2) there exist xlx 2 £ R(e1 ) U R(e2)

x 1 x2 and U £ (0,1) such that x = px1 + (l-)x 2 * It is easily

seen that a strictly concave map on S is also strictly quasiconcave

on S , which in turn is quasiconcave on S

Proposition 4.13. Consider the parametric optimization Problem P'(e).

If f is strictly quasiconcave on the set R(S) , R is strictly

quasiconcave on S , S is convex and S*(e) for all e c S , then

f* is strictly quasiconcave on S

Proof

Let ele 2 £ S , eI j e2 and A e (0,i). Denote e X = Ae1 + (l-A)e 2

By our assumptions there exists x* £ S*(e) Strict quasiconcavity

of R implies that x* - Px1 + (1-11)x 2  for some xlx 2 £ R(e1 ) Q R(e2)

P £ (0,1) . By strict quasiconcavity of f we obtain

f*(e) -f(x*) = f(ix I + (l-i)x 2 ) > min {f(xl) , f(x2)}

> inf f(x) in m inf f(x) , inf f(x)}= min {f*(e) ,f*(e

x £ R(e) 1V R(e 2 ) x e R(e ) x £ R(e2 )

i.e. f* is strictly quasiconcave on S

-24-
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In the next result we consider the Problem P 1(e).

Proposition 4.14. Consider the special Problem P 1(e). If f is strictly

quasiconcave in e on S for all x C M4 S is convex, M is arbitrary

and S*(e) + 0 for all e c S , then f* is strictly quasiconcave on S

Proof

Let e1,e 2 e S , e 1 + '2 ' X (0,1) and denote e X . e I+ (I-~

By our assumption there exists x* E S*(e X) Using strict quasiconcavity

of f we obtain

f*Ce) f(x*,e) > min {f(x*,e) f(x*,e}

> min Jinf f(x,e) inf f(x,e} min {f*(e) f*(e )I

X EM x E X

i.e. f* is strictly quasiconcave on S

r I
We call cO:E - E V {-o,-O} t semistrictly quasiconcave" on a

convex set 'M C E r(see Avriel et. al. (1981)) if, fdr all xi, x E: M and

X E (0,1)

(x 2) > O(x 1) implies that (Xx 1 + (l-X)x 2) > cp(x 1)

i.e. if -~is semistrictly quasiconvex on M4

(see the remarks concerning semistrict quasiconvexity in Section 3). The

next example shows that a result analogous to Propositions 4.11-4.13 does

not hold in this case.

1 1Example 4.15. Consider the problem P'(e). Let f:E +E and

R:E 1~ E 1be given by

f(x) - 0:if xO0 and R(e) (xj < e}, e E

25-

aw



T-472

Then, f is jointly semistrictly quasiconcave (but not quasiconcave)

and R is concave (even affine) on E, but

f*(e) {- 1 if e < 0 is not semistrictly quasiconcave
10 ife > 0

1 E1

(it is only quasiconcave) on E Also, S*(e) + 0 for e e E

It would be interesting to provide a similar example with f continuous

so that semistrict quasiconcavity of f would imply quasiconcavity of f

We call O:Er _. E I{o,=o "uniformly quasiconcave with d(.)"

on a convex set M C Er if -P is uniformly quasiconvex with d(.) on

M (See Section 3 for the latter definition).

Proposition 4.16. Consider the general parametric optimization problem

P(e). If f is jointly uniformly quasiconcave with d(.) on the set

{(x,e)l x E conv(R(e)),e E S1 , R is hull concave or concave on S

and S C Ek is a convex set, then f* is uniformly quasiconcave with

d(.) on S

Proof

In view of Remark 3.7 it suffices to prove the result in case of R

concave. Let el,e 2 E S and X E (0,1). By our assumptions and the

properties of d and the norm we obtain

f*(Xe + (1-)e = inf f(x,Xe 1 + (1-A )e 2 )
1 ) 2)2

x E R(e I + (l-X)e 2 )
2

> inf f(X + (l-)x 2 , AeI + (l-)e 2 ) >

x1  R(e1 )

* x2 e R(e2 )

> inf (min {f(xl,e1 ) , f(x2 ,e2 )J + X(1-A) d (HI(xl,e1) - (x2 9e2 )11)]

S1 c R(e1 )

x2 £ R(e2 )
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inf [min {f(xl,e1 ) , f(x2,e2)} + X(l-A) d (lie1 - e1 1)]
x 1 R(e1 )

*2 e R(e2)

- mn {inf f(xl,el) , inf f(x2, e2)} + A(I-A) d (Ile1 - e211)

xI E R(e1 ) x2 E R(e2)

- min {f*(e1) , f*(e2)} + X(l-X) d (lie 1 - e21I)

i.e. f* is uniformly quasiconcave with d(.) on S

An observation analogous to Remark 3.19 holds also for Proposition 4.16.

Proposition 4.17. Consider the special problem P1 (e) . If f is

uniformly quasiconcave in e with d(') on S for any x E M , S

is convex and M is arbitrary, then f* is uniformly quasiconcave with

d(-) on S

Proof

Let el,e 2 E S and X E (0,1). By our assumptions

f*(Xe 1+ (l-X)e2) = inf f(x,Ae + (i-X)e2 )
xsM

inf [min {f(x,e I) f(x,e2)) + X l-X) d (IleI - e211)]

x E

= min {inf f(x,e1) , inf f(x,e 2)} + A(1-) d (Ile1 - e2 11)

xEM xEM

- min {f*(e 1) f*(e2)} + A(1-X) d (Ile1 - e211)

i.e. f*(e) is uniformly quasiconcave with d(.) on S

Using the notion of homogeneous concavity for maps (see Section 2)

we obtain the following counterpart of Proposition 3.20 (recalling that a

homogeneous concave function was defined in Section 3).

Proposition 4.18. Consider the general parametric optimization problem

P(e). If f is jointly homogeneous quasiconcave on En x K , R is

-27-
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homogeneous concave on K , and K is a convex cone, then f* is homogeneous

quasiconcave on K

Proof

Follows easily from Propositions 4.1 and 2.3 taken together.

Remark 4.19. Proposition 4.18 will remain true if the map convR is

homogeneous concave on K , in view of Remark 3.7.

The next result is obtained for the problem P1 (e).

Proposition 4.20. Consider the special problem Pl(e). If f is

homogeneous quasiconcave in e on K for all x e M , K is a convex

cone and M is arbitrary, then f* is homogeneous quasiconcave on K

Proof

Follows easily from Propositions 4.9 and 2.5.

We shall state now several results providing sufficient conditions

for quasimonotonicity of f* . Recall from Section 2 that O:Er- E I U

"[Xl,-Ioo} is called "quasimonotonic" on a convex set M C Er if, for all

c1X H and X e (0,1),

min { (x I ) 1 (x2)} (X 1 + (l-X)x 2 ) < max { (x I ) , (x2)}

The notions of an (essentially) affine and an (essentially) hull affine

point-to-set map were introduced in Section 2.

Proposition 4.21. Consider the general parametric optimization problem

P(e). If f is jointly quasimonotonic on the set {(x,e)I x E conv(R(e))

e E S}, R is (essentially) hull affine or (essentially) affine on S and

S is convex, then f* is quasimonotonic on S

Proof

Follows from Propositions 3.6 and 4.3 and the fact that an (essentially)

affine map is also (essentially) hull affine.
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The following result slightly extends Proportion 4.21.

Proposition 4.22. Consider again the general parametric optimization

problem P(e). If f is jointly quasimonotonic on the set {(x,e)J x e ck

conv(R(e)),e e S} and upper semicontinuous in x on the set ckconv(R(S))

for every e E S , ckR is (essentially) hull affine or (essentially)

affine on S and S is convex, then f* is quasimonotonic on S

Proof

Follows immediately from Proposition 4.21 and Remark 3.5.

In order to strengthen Proposition 4.21 for the problem P'(e),

we introduce the following definitions. A point-to-set map R:Ek - EP
is called "quasimonotonic" on a convex set S C Ek if R is both

quasiconvex and quasiconcave on S , i.e. if for any convex set

NCE n both R-l(M) n S and R+(M) r S are convex. Further, R is

called "hull quasimonotonic" on S if convR is quasimonotonic on S

Note that hull quasimonotonicity of R on S is equivalent to hull

quasiconvexity together with quasiconcavity of R on S

Proposition 4.23. Consider the parametric optimization problem P'(e).

If f is quasimonotonic on the set conv(R(S)), R is hull quasimonotonic

or quasimonotonic on S and S is convex, then f* is quasimonotonic

on S

Proof

The result follows from Propositions 3.8, 3.10 and 4.6 combined.

Before stating the next results we introduce the following

definitions. A function 4:E r - El U {-,-} is called "strictly quasi-

monotonic" on a convex set McE r if it is both strictly quasiconvex

and strictly quasiconcave, i.e., if, for all x,,x 2 £ M , x1 + x2 and

X e (0,1)

min {(x1) , O(x2)} < O(Xx I + (1-X)x2) < max {(x1) , o(x2)}

- 29 -
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The point-to-set map R:E k 
-, 

n  is called "strictly affine"

("strictly hull affine") on a convex set S C Ek if R (convR) is both

convex and strictly concave on S . A map strictly affine on S is

affine on S but not conversely. We call R "strictly quasimonotonic"

on S if is both strictly quasiconvex and strictly quasiconcave on S

Strict affineness of R on S implies strict quasimonotonicity of R

on S , which in turn implies quasimonotonicity of R on S

Proposition 4.24. Consider the general parametric optimization problem

P(e). If f is jointly strictly quasimonotonic on the set

{(x,e)I x e conv(R(e)), e E S} , R is hull affine or affine on S

S is convex and S*(e) + 0 for all e E S , then f* is strictly

quasimonotonic on S

Proof

Follows from Propositions 3.11 and 4.11 and Remark 3.7.

Proposition 4.25. Consider the parametric optimization problem P'(e).

If f is strictly quasimonotonic on the set conv(R(S)), R is strictly

hull affine or strictly affine on S , S is convex , S*(e) +

for all e 6 S and S*(e ) + S*(e 2 ) if el,e2 E S , eI + e2 , then

f* is strictly quasimonotonic on S

Proof

Follows from Propositions 3.12 and 4.12 and Remark 3.7.

The next result strengthens Proposition 4.25.

Proposition 4.26. Consider again the parametric optimization problem

PA(e). If f is strictly quasimonotonic on the set R(S) , R is

strictly quasimonotonic on S , S is convex, S*(e) + 0 for all

e S and S*(e ) + S*(e 2) if el,e2 E S , e+ e2 , then f*

is strictly quasimonotonic on S

-30-

.. ...-.. . . "- - -



I
T-472

Proof

Follows from Propositions 3.14 and 4.13.

5. Pseudoconvexity and pseudoconcavity of the
optimal value function

We shall consider the notion of pseudoconvexity first. A function
1 r

O:Er - E is called "pseudoconvex" on a convex set M C E (Ortega and

Rheinboldt (1970), Thompson and Parke (1973) if, for all xl,x 2 : M

and X e (0,1),

(x1 ) < O(x2) implies that O(Cx 1 + (l-x)x 2) < O(x2) - XB(XlX 2) ,

where (XiX > 0 depends only on x and x This definition

is an extension of the standard definition of a pseudoconvex function

(Mangasarian (1965, 1969)), as shown in the next result.

Proposition 5.1. (Ortega and Rheinboldt (1970), Thompson and Parke (1973)).

Let O:E r . E1 be a differentiable function defined on an open convex
r

set M CE.. Then 0 is pseudoconvex if and only if, for all x1,x2 £ M

74(Xl) T (x2_xI) > 0 implies that O(x2) > O(x )

Here, we are interested in general results and hence prefer the more

general definition. It is also noted that in general f* is not

differentiable, even if f is differentiable.

Proposition 5.2. Consider the general parametric optimization problem

P(e). If f is jointly pseudoconvex on the set {(x,e)I x c R(e),e c S}

R is essentially convex or convex on S , S is convex and S*(e) + 0

for all e C S , then f* is pseudoconvex on S

Proof

Let el,e2  S and suppose that f*(e,) < f*(e 2) . Then, since

S*(e) + 0 for all e e S , f*(e ) - f(xl*,e I) for some x1* E R(e1 )

31
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and f*(e2) = f(x2 *,e 2) for some x2* E R(e2) By pseudoconvexity

of f , f(x1*,e1) < f(x2*,e2) implies that for all X e (0,1) and some

0 > 0 which depends only on (x1*,e1 ) and (x2*,e2)

f(Xx1* + (l-X)x2* , Xe1 + (l-A)e 2) < f(x2 *,e2) -a

By convexity of R , for any X c (0,1)

x1 * + (l-X)x2* E R(Xe + (1-X)e2) , so for all X E (0,1)

f*(Xe + (l-X)e2) < f(Xx1* + (l-X)x2* , Xe1 + (l-X)e 2)

< f(x 2*,e 2) -AS = f*(e 2 ) - Xa .

Since now depends only on e1 and e2 the results is proved.

Note that Proposition 5.2 is directly applicable to P'(e) as

well. It is not known whether the assumption that S*(e) + for all

e c S can be relaxed in the above result. Proposition 5.2 can be

specialized to the case of the parametric NLP problem P 3(e) by

* assuming, as in Proposition 2.1, joint quasiconcavity or concavity

of igi and joint quasimonotonicity or affineness of {h.} on M x S

with M convex. Furthermore, Proposition 5.2 can be specialized to

P2(e) precisely as in Proposition 2.2. Finally, if f* is known

or assumed to be differentiable and S is open and convex, we can use

the definition of Mangasarian (1965, 1969).

A function O:E r - E1  is called "strictly pseudoconvex"

on a convex set MCEr (Ortega and Rheinboldt (1970), Thompson and Parke

(1973)) if, for all x1 ,x2 £ M , x1 + x2 and A s (0,1)

(x 1) < (x2) implies that O(Ax 1 + (l-X)x 2 ) < O(x2) - xa(xlx 2 ) I

where 8(x1 ,x2) > 0 depends only on x1 and x2 . This definition also

has a differentiable counterpart (Ponstein (1967)), analogous to the

definition of a pseudoconvex function (see Proposition 5.1).
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Proposition 5.3. Consider the general parametric optimization problem

P(e). If f is jointly strictly pseudoconvex on the set

{(x,e)I x E R(e) , e S S} , R is convex on S , S is convex and

S*(e) + for all e e S , then f* is strictly pseudoconvex on S

Proof

Let el,e 2 E S , eI + e2  and suppose that f*(e I) < f*(e2) Since

S*(e) + for all e e S , f(xl*,e I) = f*(e1 ) for some xl* E R(e I )

and f(x2*,e2) = f*(e2 ) for some x2 * 6 R(e2) . By strict

pseudoconvexity of f there is > 0 depending only on (xl*,eI)

and (x2 *,e 1 ) such that for all X e (0,1)

f(xl* + (l-A)x 2 * , Xe1 + (l-X)e 2 ) < f(x 2 *,e 2) -6

By convexity of R Xx * + (l-X)x 2* e R(Xe I + (l-X)e 2  for all

X E (0,1) so that for any X E (0,1)

f*(Ae + (l-A)e2)f f(xl* + (l-)x 2* , e + (l-)e 2)

< f(x2*,e2) - XB = f*(e 2) - a .

Since B depends only on eI and e2  the proof is completed.

For the problem P'(e) we state another result, since Proposition

5.3 is not applicable in this case (i.e., with f(x,e) = f(x))

Proposition 5.4. Consider the parametric optimization problem P'(e).

If f is strictly pseudoconvex on the set R(S) , R is convex on S

S is convex, S*(e) 91 0 for all e E S and S*(e ) + S*(e 2) if

el . e S, el + e2 ,then f* is strictly pseudoconvex on S.

Proof

Let el,e 2 e S , el + e2 and denote e X Xe 1 + (l-X)e 2

1 -33
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If f*(e1) < f*(e2) , then f(xl*) < f(x2*) for some x1* e R(e1)

x2* R(e2) and x1* + x2*, by our assumptions. Strict pseudoconvexity

of f and convexity of R imply that for all X E (0,1) and some

8 > 0 which does not depend on A,

f*(e) f inf f(x) < inf f(Xx1 + (l-A)x 2 ) < f(Xx1* + (l-X)x2*)
x e R(eX) x1 S R(e1 )

x2 E R(e2 )

<f(x2 ) - Xa = f*(e 2) - A , what completes the proof.

Remark 5.5. Note that the sets S*(e) are actually singletons here,

since strict pseudoconvexity implies strict quasoconvexity (Poinstein

(1967)).

Next, we consider the notion of pseudoconcavity. A function

:E r I E1  is called "pseudoconcave" on a convex set MIC Er (Ortega and

Rheinboldt (1970)) if- 0 is pseudoconvex on M , i.e., if, for all

xlx 2 C M and A C (0,1)

f(x1 ) < f(x2) implies that f((l-X)x1 + Ax2) > f(x1 ) + AS(X1,x2) ,

where a(xl,x 2) > 0 depends only on x1  and x2 . As with a pseudoconvex

function, the above definition is an extension of the standard one

(Mangasarian (1965, 1969)) and a result analogous to Proposition 5.1

holds. Unlike a strict parallel of the pseudoconvex result, however,rpseudoconcavity of f* does not seem to follow from pseudoconcavity of

f and concavity of R . This is seen from Example 4.15, where the

objective function is clearly pseudoconcave but f* is not pseudoconcave.

As was mentioned before, f is not quasiconcave in this example. Therefore

we give one additional example with f pseudoconcave and continuous (and

thus also quasiconcave).
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Example 5.6. Consider the problem P'(e). Let f:E 1 E and R:E E

be defined as follows: f(x) = ex , x E and

((-_a, 0) , if e < 0

R(e) ,if e > 0

It can be easily verified that f is pseudoconcave (and quasiconcave)

and R is concave on E . However,

0, e<0
f*(e) = is not pseudoconcave

I, e > 0

(though it is quasiconcave) on E

The next example shows that inf fi is not pseudoconcave

i Fi I

in general, even if {fi} are pseudoconcave.

Example 5.7. Consider the problem Pl(e). Let

1 1

xe if e < ,x E

f (x,e)

+e if e > 1 El
2 , e , x

and S = [0,1] , M = (0,1) . Then f is pseudoconcave (and quasiconcave)
in e on S for all x M.

0 , 0 < e < -
However, f*(e) = 1 2 is not

e , <e< 1

pseudoconcave (it is only quasiconcave) on S

Note that in these two examples, the minimum was not attained for

the problems of interest. This leaves open the possibility that

pseudoconcavity of f* might be proved for f both pseudoconcave and

quasiconcave and R concave (or affine) under the assumption of nonempty

solution sets S*(e) , as in the pseudoconvex case (see Proposition 5.2).
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A function p :E r - E1 is called "strictly pseudoconcave"

on a convex set H CE r if - is strictly pseudoconvex on H

The following example shows that inf f. is not always strictly
ie I

pseudoconcave, even if {f i are strictly pseudoconcave.

Example 5.8. Consider the problem P Ce). Let f(x,e) = x(e +- e)

for x £ H = (0,1) , e t S = (0,1) .Then, f is strictly pseudoconcave

in e on S for all x £ M , but f*Ce) = 0 , e g S , is not strictly

pseudoconcave.

~6. Concluding remarks

A short overview of the developments from preceding sections is

given in this section. Section 2 contains the material taken from

the previous paper by the authors. This material is extensively used

here. In Section 3 quasiconvexity properties of the optimal value function

f* are considered. Except for Proposition 3.8, all of the results seem

to be new. The basic sufficient conditions for quasiconvexity of f*

are giver in Proposition 3.1. Specializations to problems P3 (e) and

P2 (e) are obtained in--ropositions 3.2 and 3.3. Some extensions are

also given (Proposition 3.4 and 3.6). Using the notion of a quasiconvex

map we strengthen this basic result for problem P'(e). (Propositions

3.8-3.10). Proposition 3.8 was obtained previously by Oettli (1981)

who independently introduced the concept of a quasiconvex map. Next,

several results provide sufficient conditions for strict and semistrict

quasiconvexity (Propositions 3.11-3.17). A new notion of a strictly

quasiconvex map is utilized in some of these results. Finally, we

obtain results on uniform and homogeneous quasizonvexity of f*

(Propositions 3.18-3.21).

Section 4 contains results on quasiconvexity and quasimonotonicity

I of f* . All of these results appear to be original. The main result

providing sufficient conditions for quasiconvexity of f* is given in

~Proposition 4.1 and is subsequently strengthened in Propositions 4.3 and

4.4. Using the introduced notion of a quasiconcave map we are able to

obtain a stronger result for the problem P'(e) (Proposition 4.6).

- 36 -
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Another interesting result for the same problem is given in Proposition

4.7 and subsequently applied to prove a known result from quasiconvex

programming (Proposition 4.8). A simple result for the special problem

P1 (e) is also obtained (Proposition 4.9). Several results are proved

next on strict quasiconcavity of f* (Propositions 4.11-4.14).

Proposition 4.13 utilizes a new notion of a strictly quasiconcave map.

Results on uniform and homogeneous quasiconcavity (Propositions 4.15-4.20)

complete the first part of this section.

The second part begins with the basic results, giving conditions

for quasimonotonicity of f* (Propositions 4.21 and 4.22). The new

notions of quasimonotonic and hull quasimonotonic maps lead to a stronger

result for the problem P'(e) (Proposition 4.23). Several results on

strict quasimonotonicity are given next (Propositions 4.24-4.26), using

the introduced notions of strictly affine and strictly quasimonotonic

maps.

In Section 5 we consider pseudoconvexity and pseudoconcavity

properties of f* . Again, all of the results appear to be new.

The basic result on pseudoconvexity of f* is stated in Proposition
5.2. Two results on strict pseudoconvexity follow next (Propositions

5.3 and 5.4). For the pseudoconcave case we do not obtain any similar
results. We give several examples exhibiting this fact. Despite these

examples, however, there remain several open questions concerning results

in this section. Further investigation of these results may very well

lead to interesting new results or improvements in the existing ones.
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